AG8旗舰厅

工程案例展示
AG8旗舰厅

AG8旗舰厅通风降温系统

电 话:0579-81328720> 传 真:0579-81328720
联系人
售前咨询:13388660553
技术指导:18858318765
售后服务:15068216608
地址:上海 金华 嘉兴 襄阳

屋顶负压风机厂家_风机技术矿用通风机噪声研究控制“走出去”参


1 引言

  离心式引风机是我公司电解生产过程中用来给输送氧化铝的风动溜槽供应高压风的主要设备。全公司3个电解厂共36台功率为37kW的离心式引风机,都是长时间满负荷运行,要消耗巨大的电能。本文简要地从无功就地补偿原理出发,分析了离心式引风机节能效果及为公司节能创汇带来的效益。

2 离心式引风机的工作原理

  离心式引风机的驱动电动机型号:Y160L-237kW,电压:380V ,风机所产生的高压风通过管道进入风动溜槽风室。它为铝电解生产过程中输送氧化铝的风动溜槽提供高压风,保证电解槽生产过程中氧化铝的供应,风动溜槽分为走料室和风室,中间通过帆布作为隔层,只要风室内通有高压风,氧化铝就会被高压风吹起沸腾,并顺着风向向前沸腾流动,就可完成氧化铝输送任务。

3 无功就地补偿器的特点

  无功就地补偿器系采用日本指月株式会社和ABB电气公司制造的自愈式金属化并联电容器组装而成,每个电容器都有独特的保险装置。具有如下特点:

  (1)体积小、质量轻、容量大,适合各种场合的0.4kV、3kV、6kV、10kV各种高低压电动机安装,起到终端补偿的最佳效果;
  (2)质量可靠,各种性能指标均符合GB3483-89电气标准;
  (3)安全措施齐全,内装放电电阻和独特的保险装置,并具有自愈功能;
  (4)整机可按需要的容量组合,以达到最佳的补偿状态;
  (5)无投切装置和运转器件,安装简便易行,不影响生产。

4 电动机无功就地补偿原理

4.1 基本原理

  无功功率是感性电气设备运行中,与电源间往返交换以建立交变磁场,保证电能转换为其它形式的能或传递的不直接做功的电能。按功率三角形S2=P2+Q2,式中S为视在功率;P为有功功率;Q为无功功率。P/Q=cosφ,cosφ为功率因数。

  电动机功率因数高低是影响其电流大小及电源索取电能多少的决定因素。而无功功率的多少又直接决定功率因数的高低。在电源变压器的高压或低压侧安装集中补偿器,主要是解决电网的无功,提高电网的功率因数,用电单位内部的电动机和输电线路的无功并没有从集中补偿得到有效的解决。因此,给电动机加装无功就地补偿器很有必要,如图1所示。该无功就地补偿器是由并联电容器组成,它与电动机绕组并联同时投切,以改善电动机和用电线路、设备的功率因数,降低线路电流,减少无功消耗,提高电源变压器负载率

 

4.2 选型
  根据补偿后的要求,将功率因数提高的百分数折算成降低无功功率的百分数,就可以确定补偿器的容量值,根据我公司的要求选定补偿器的容量是16kvar。

4.3 功率因数与线损的关系
  流经供电线路的电流I包括有功分量(IP)和无功电流分量(IQ),I2=IP2+ IQ2

线路功率损耗:△P=3 I2R=3(IP2+ IQ2)R=3 IP2R+ 3IQ2R,当降低功率因数时,无功电流IQ增加,线路损耗也随之增加。功率因数升高时,无功电流IQ减少,线路损耗也随之减少。所以,提高用电的功率因数对节电有重要的意义。功率因数升高或降低与功率损耗的增减关系如表1和表2所示。

基于上述分析,决定首先对风机侧做平衡。平衡后各轴承的振动都明显改善(见表3)。

5 节能分析

  根据电力部门出版的相关资料介绍,无功经济当量是每kvar时节电0.08~0.16kW/h,取最低值0.08kW/h,以单台全年300天计算:三班制:7200h×0.08×16kvar=9216kW·h。电价按0.4元/ kW·h计算,可节约:9216×0.4=3686.4元,36台每年可节约:36×3686.4=132710元。这只是带来的直观效益,它对电气方面的益处也是非常可观的。

6 效果分析

  (1)改善设备的功率因数,使之提高到92%~97%,降低无功损耗50%~80%,平均节电10%~15%。
  (2)提高变压器负载率,经过补偿可以使变压器增容20%~30%。
  (3)减小用电单位内部线损,改善电压质量。
  (4)可减少输电导线截面积,平均减小线径40%。
  (5)延长相关电气的使用寿命,降低维修费用。
  (6)一般每kvar补偿器一年可以节电300~500 kW·h ,仅以节电的电费计算,半年至一年即可收回投资。


煤矿安全形势严峻,瓦斯爆炸事故时有发生。我国煤炭消耗占世界的35% ,中国煤炭百万吨死亡率是美国的100倍;全国煤矿特重大事故中有 90% 是瓦斯爆炸事故。我国矿用风机面对安全节能降耗和减排噪声压力,为抑制“两高一资” ( 高污染、高能耗、资源型 ) 。研究和控制及评价考核矿用风机的噪声,是关系我国煤矿安全节能降耗,减排噪声污染和环保的大事。

1  矿用风机噪声的危害

  风机是一种通用机械,产量大、用途广、噪声高。目前已成为污染城市、矿山及煤矿的主要噪声源。它不但严重污染环境、影响生产安全和工作效率,还损害健康并造成工伤事故。

2  矿用风机噪声标准

  工矿企业噪声标准又称听力保护标准,对听力保护有决定影响的物理参量是:噪声级、频率和工作时间。试验表明:噪声级在85dB(A)以下,对85%的人的听觉及人体没有影响,六叶模压风机。高频噪声 ( 尤其风机高频的离散声 ) 比低中频噪声对人体的危害更大,这是因为人耳对1000~6000Hz的噪声反应最敏感,通常讲:最“刺耳”。

  噪声的作用时间,是指操作工人在噪声环境下工作的时间,对听觉和人体的影响关系极大。允许的噪声是指在工人耳朵位置的稳态A声级或间断噪声级的等效连续A声级。在允许的噪声级中[若以85dB(A)] 每提高3dB,工作时间减半。也就是说,允许的噪声为85dB(A)时,每日接触噪声时间为 8h,而88dB(A)则为4h,依此类推。《煤矿安全规程》规定:作业场所的噪声,不应超过85dB(A),屋顶电动排气设备。

3  矿用风机噪声和性能的关系

  由相似理论可知,通风机流量、压力、所需功率具有如下关系:
   流量 ∝ D 3n ,即流量与直径的立方、转速的一次幂成正比;
   压力 ∝ D 2n 2ρ ,即压力与直径的平方、转速的平方和密度的一次幂成正比;
   功率 ∝ D 5n 3ρ ,即所需功率与直径的5次方、转速的立方、密度的一次幂成正比。

  也就是说,直径不同、转速相同的两台相似通风机,其流量与直径的立方、压力与直径的平方、所需功率与直径的5次方成正比;反之,如果直径相同转速不同,流量、压力、所需功率则分别与转速的1次方、2次方、3次方成正比。通风机的性能与直径、转速的这种相互关系,也就是通常所说的通风机的比例法则。

   通风机的噪声与性能的关系,可按Madison 和Graham提出的噪声法则:
   LA2 = LA1 +70lg(D2/D1)+50lg(n2/n1)进行计算;
   全国集中测试本体 ( 级 ) 对旋 YBDF500-2局扇, Q1=4.21m3/s , p1=2195.89Pa , P1=9.5kW ,n1=2900r/min,LA1=117.5dB(A) 。则FD №8/2×55的 LA2 =117.5+70 lg(0.8/0.498)+50 lg(2970/2900)=117.5+14.41+0.5=132.41dB(A)
   通过计算得知:FD № 8/2×55的本体 ( 级 ) 噪声为132.41dB(A),经消声器消声后FD

№8/2×55的装置噪声LSA小于16dB( 公开值 ) 。根椐其风量:660~950m3/min ,风压7100~ 1500Pa ,按 LSA = LA - 10lg( Qp2 )+19.8 公式计算结果: FD №8/2×55其本体 ( 级 ) 比 A声级在46.99 ~ 58.91dB 之间。

4  矿用风机噪声评价

  声压级相同而频率不同的声音作用于人耳,人们感觉的声音大小是不相同的。也就是说,声音的大小 ( 响度 ) 是由人们的听感决定的。即响度是人们对声音强弱的主观度量。

  声级计所测得的噪声级称为总噪声级。总噪声级 LA 的大小反映了人耳对噪声响度级的感觉,所以一般用来作为评价噪声的允许标准。

  《煤矿安全规程》规定:作业场所的噪声,不应超过 85dB(A) 。 MT222 、 MT755 和 JB/T9100-1999 及 MT754 小型煤矿地面用抽出式轴流通风机技术条件、标准均规定,风机噪声以比A声级评价考核,其表达式为 LSA= LA-10lg(Qp2)+19.8 。 A声级噪声LA是应用声级计按规定测量位置直接测量的值,而比A声级 LSA 是取决于风量和压力大小的计算值。目前,在国内外常用A声级评价工矿噪声,然而因对旋风机级噪声太高,开发者采用比A声级LSA考核评价噪声大小,这显然是错误的。因为, JB/T8690-1998 《工业通风机 噪声限值》标准的适用范围只是一般型式的离心和轴流通风机;而该标准不适用于“特殊高压等型式 ( 一般只适用于≤ 1000Pa) 和对噪声有特殊要求的通风机” [ 对旋局扇压力 11500Pa ,主扇 5951Pa 算高压。煤矿作业场所的噪声,不应超过 85dB(A) 的特殊要求 ] 。 然而MT222 、MT755 和 JB/T9100-1999 及MT754标准均采用了比A声级噪声的限值评价考核风机噪声,显然是错误的。结果导致: (1) 对旋高噪声反而变成低噪声,出现对旋噪声 (LSA) 小到-0.92dB 和 8dB ; (2) 国内外曾大量使用的节能低噪省材的所有单级局扇,因LSA不达标而在我国全部被淘汰,如 JBT51-2(5.5kW) , A声级比JBT52-2(11kW)还小 5dB(A) ,而比A声级LSA却反高出 10.8dB 。造成我国局扇全部取消单级,均采用多级高压系列局扇 (对旋和 YBT 系列) 及对旋主扇,威胁煤矿安全节能降耗减排噪声污染和环保约束的实现,浪费了大量能源资源还造成环境噪声的污染。

5  矿用轴流通风机噪声的测定

  根据 GB/T2888-1991 《风机和罗茨鼓风噪声测量方法》,对矿用风机进口或出口噪声,需要测量A声级和主要测点的63 、125 、250 、500 、1k 、2k 、4k 、8kHz8个倍频带声压级。并规定了风机进口和出口测点位置,测量风机由进气口辐射的噪声,是在进气口中心轴线上,距离进气口中心为标准长度的位置上,即出气试验时。对于抽出式风机的排气放空,都需要在出口进行噪声测量。测点选在与出气口轴线45°方向,距离出气口中心为标准长度的位置上,即进气试验时。然而对旋开发者,为达到人为地改变局扇总长度达到提高效率和降低噪声目的,把压入式局扇按标准规定应做出气试验,而改为进气试验。又因在0≤l/d ≤1范围内,l/d 越大时, p2就越小,压力偏高值△ p = pa-p2 就越大。因此对旋就成为所谓的“高效率、高风压和低噪声”的风机。A声级 LA未按 GB2888 标准规定的测点位置测量,而相反在非工作状态位置测量,导致测量值和实际噪声相差很大,加上消声器玻璃棉粉尘附着失效,噪声值大大超过规定值 85dB(A) 。

6  矿用风机噪声产生的原因及控制

  矿用风机有主扇、辅扇和局扇。轴流通风机的圆周速度为离心式圆周速度的2倍。但效率较高,选用矿用风机主要原则是安全可靠、噪声低、效率高和成本低以及体积小、质量轻。对于高效率和低噪声的关系,目前存在一些模糊概念。因为一般说来,采用较小轮毂比的轴流式风机,容易得到高效率和低噪声,但其压力系数较低。因此,要达到同样压力,就要提高工作轮圆周速度。矿用风机噪声以气动噪声为主,气动噪声又分旋转噪声和涡流噪声,前者与工作轮圆周速度的10次方成比例;后者是6次方成正比。因此,风机周速越高,其噪声也就越大。由此看来,似乎风机高效率与低噪声互相矛盾。但实际情况并非完全如此 ,风机的噪声不但取决于叶轮圆周速度,即叶轮直径,而且还受其他气动及结构参数,如叶片安装角、叶间气流速度、叶片气动负荷等因素的影响,最显著的是,当叶片安装角增大至一定值后,噪声将急剧增大。以我国矿用对旋 FBD № 6.0/2×15低噪声对旋式局部通风机为例,为提高风机压力和结构上需要,选择了较大的轮毂比 390/600=0.65 ,但其出口毂比高达 0.65 ,使风机有效全压效率大大下降,而噪声级高达120dB(A) 。比老局扇 JBT(28kW) 级噪声还高。 较小的工作轮直径、叶型安装角、毂比和叶片数,对轴流风机来讲,可以期望获得比较良好的声学特性,但也许由于对旋风机的两级叶轮靠得很近,而且又相对高速 (2950r/min)反方向旋转,相对线速度很大,大大恶化了风机的噪声特性,噪声很高。因此对旋风机的噪声特性及其控制很值得研究。当叶片安装角大于普通双级通风机时,压力曲线很陡,且噪声更高。因此,对旋风机是效率最低、噪声最高的猪舍通风设备。

  然而,为了满足对局扇运行性能的要求,必须选择合理的风机型式及结构参数,但无论选择何种型式风机,当压力要求较高时,都存在相当严重的噪声问题。因此,国外局扇厂家大多配套生产消声器,但由于对旋风机本体 ( 级 ) 噪声很高,致使需要结构非常庞大的消声器 ( 扩散塔 ) 才能获得要求的消声量。如我国生产的机号为№46/2×1500的 FBCDZ 地面用防爆抽出式对旋轴流通风机 ( 带扩散筒、消声器和扩散塔 ) ,长达53.38m ,其工作轮圆周速度118m/s( 达上限 ) 。在使用时,由于超细玻璃棉粉尘附着,吸声材料在一年,甚至几个月内便会失效。因此,对矿用风机本身噪声的控制已成为矿用风机设计的基本要求。

  在噪声防护方面,德国 KKK 公司做了试验研究,研究结果表明:降低噪声的最有效途径就是降低周速,并提出低噪声风机的设计方案,采用强烈扭曲的宽叶片 ( 增加弦长 ) ,增加叶片数 (4 ~ 8 片叶片 ) 。这种风机在不降低气动效率的前提下,将周速限定在35~55m/s ,比老式风机噪声降低2倍。其声功率级为
Lw ≤ 80+10lgPe [dB(A)]
  式中 Pe 为通风机功率, kW 。
  国外降低声源的降噪经验值得借鉴。

  风机噪声以气动噪声为主,它又分涡流噪声和旋转噪声,风机的气动噪声就是这两种噪声相互混杂的结果。一般说来,涡流噪声主要是由于附面层产生旋涡脱离使绕叶栅环量发生改变而使升力变化造成的,而旋转噪声则主要是由于多级叶栅排的相互扰动所致。
  关于叶栅排相互扰动产生的离散声特性及其控制。矿用风机由于要求压力较高,流量较大,因而不可避免地产生很高的噪声,其中又以高频的离散声影响最为显著。因此,局扇噪声的控制应重点放在减小令人讨厌的离散声上。
  多年来,对轴流式透平机械内噪声源性质的深入研究,使离散声产生的机理得到充分的认识。研究表明:离散声主要是由于上流叶栅形成的尾迹对下流叶栅 ( 静叶和动叶 ) 的撞击而产生的脉动力,因而在下流叶栅排中的每一个叶片产生一个偶极子声源。对噪声产生机理的认识,使得能对相互扰动产生的噪声得到研究,以下一些有效的减噪方法亦得以发现。

  (1)动叶及导叶叶片数的最佳选择
   有人通过建立合适的声源分布的声学模型,研究指出:分布声源的辐射效率与每排叶栅的数目有关,也就是说,轴流风机和压缩机产生的离散声取决于动、静叶叶栅的相对数目。
  (2)工作轮叶片的不均匀分布
   工作轮叶片分布不均匀程度较小,目的在于将叶栅排的扰动错开,以将离散声扩散至较大的频率范围里去,而不是集中于某一频率上。显然这种声域扩散的方法并不能将声辐射能量减小,而是将某一频率上的声能摊开,使离散声峰值减小,这样的频谱特性是人们主观感受可以接受的。
  (3)后导叶叶栅的不均匀分布
   导叶的不均匀分布可以是周向的,也可以是轴向的。
   ① 周向不均匀分布,这种方法对于动、静叶数目很难得到合理的选择时比较有效,特别是将这种方法应用于动叶前装置有支柱的场合非常有效。但由于静叶错开角度较大,对气动性能的影响也较大,因比,这种方法受到限制。
   ② 轴向不均匀分布,这种轴向错开的不均匀分布也是将静叶排合成两组,两组叶列对应的叶片安装位置在轴向有所错开。研究分析表明:存在一个使离散声最小的最佳错位距离。将前述风机的后导叶在轴向彼此错开 4.2mm 时,离散声最小,减噪量达 7.5dB ,而气动性能基本与均匀分布时差不多。因此,这种方法具有较大的应用价值。
  (4)采用倾斜后导叶,屋顶通风降温,这种方法与上述的不均匀分布具有相似作用,但它是在叶片展向上将扰动错开的。选择合适的倾斜角度可使离散声减小,而又能具有较好的气动性能,因此,这种方法得到广泛的应用。

7  结论

  对旋式矿用风机 ( 主、局扇 ) 是低效率,高噪声,结构复杂,价高质差,耗能耗材设备。为实现“十一五”规划中十大节能工程之一:“在煤炭等行业进行电动机拖动风机、水泵系统优化改造”。要淘汰“两高一资”产品。大力发展低噪节能可“按需供风”的调角或调速斜流式、子午加速式及以单级为主双级为辅的普通轴流式和对旋,以满足短、中、长距离通风需要。



 随着近年来我国风电产业的快速发展,风电装备制造业出现投资过热,一哄而上的现象。国家发改委就此下发《关于抑制部分行业产能过剩和重复建设引导产业健康发展的若干意见》。

  要实现中国风电装备制造业的健康发展,应该把握好两个方向。一要加大自主创新力度,把企业做大做强,提高市场竞争能力;二要加大“走出去”的力度,积极参与国际市场竞争,拓展更大更广阔的生存和发展空间。

  风电装备制造业前景并不悲观

  有数据显示,目前全国风电机组整机制造企业已超过80家,而且还有许多企业准备进入其中。预计2010年我国风电装备产能将超过2000万千瓦,而风电装机规模大约为1000万千瓦左右。

  就目前数据来看,我国风电装备特别是风机的产能确实出现过剩苗头。然而,从发展的角度看,我国风电产业发展的潜力巨大,空间巨大。风电装备特别是风机制造业的发展前景也许并不像人们想象的那么悲观。

  2008年我国发电装机总容量已将近8亿千瓦,而风电只有1000万千瓦,不到其中的1%。到2020年,我国风电装机将达到1亿千瓦,电力总装机将达到15亿千瓦,风电在整个电网中的比例将达到6%。届时,随着智能电网与储能技术的进步,全国范围内的电力调度将逐步实现,将彻底解决在内蒙、甘肃等西北地区用电负荷小、风电上网量大、送出困难等现实问题,实现风电的全额收购。也就是风电产业的潜力巨大。

  国内风机制造企业可分成三大“梯队”。金风科技、大连华锐、东方汽轮机三家企业2008年产量均达到了100万千瓦以上,属于第一梯队;浙江运达、上海电气、湘电、中国航天万源等企业的年产量在10至25万千瓦,属于第二梯队;另外还有5家企业刚刚开始小批量生产,年产量不到10万千瓦,可归为第三梯队。

  而其他的企业实际上处在样机制造甚至只是“想法”制造阶段。因此,80余家的风机制造企业只是数字上的,不能等同于设备生产能力。目前我国风电机组制造业存在的最大问题是数量多、规模小,自主技术研发力量不足,特别是真正具备整机制造能力的企业数量少。

  提高自主创新能力是关键

  制约我国的风电装备制造业健康发展的最大困局,就是自主创新研发能力较弱,许多技术需要依靠国外的研发机构来实现。具体体现在大型风力机组的总体设计和载荷计算能力差,控制系统、发电机、齿轮箱、轴承的设计和生产能力差。同时,中国的制造工业基础还比较薄弱,风机的轴承、控制系统等零部件还需要从国外进口。

  面对日益激烈的市场竞争,中国风电装备制造业已经意识到“坚持自主创新、研发高端产品”是企业生存和发展的关键。近年来,以金风科技、中国航天万源等为代表的风电装备企业进一步加大自主创新能力,核心技术竞争力不断提高。

  中国航天万源作为中国运载火箭技术研究院的控股子公司,从1995年开始自主研发600千瓦变桨距风力发电机组技术,研制成功了具有自主知识产权的WD646型600KW变桨距风力发电机;2003年,当兆瓦级风力发电机组成为当今世界风电主流时,中国航天通过国际战略合作方式,快速消化并掌握了具有国际最先进水平的兆瓦级风机技术;2006年与西班牙公司联合投资生产的AW1500型1500千瓦变速恒频风力发电机下线,并于当年实现批量生产,分别在河北张北、江苏如东、浙江慈溪等全国多个风电场投入使用,可利用率均达到98%以上。

  如今直驱风机代表着世界风力发电技术的发展方向,具有发电效率高,易于安装维护,机组寿命长、体积小、全寿命运行维护成本低等优点。2007年中国航天火箭院引进荷兰EWT公司900千瓦直驱风机技术,航天万源在此基础上研发出具有自主知识产权的2MW永磁直驱风力发电机组。2008年,中国航天万源直驱风机的总装厂和叶片厂在内蒙古乌兰察布市投建,目前已生产110台900千瓦直驱风机,实现了小批量生产。预计到2010年上半年,中国航天万源自主研发的2兆瓦永磁直驱风机将在内蒙古兴和航天风电场进行调试。同时,适用于海上和滩涂发电的3至5兆瓦永磁直驱风机的预研工作也将会取得突破性进展。

  “走出去”参与国际市场竞争

  从长远发展看,中国的风电装备制造业需要通过挖掘国内和国际两个市场,来消化产能。如果说提高自主创新能力推动产业升级是中国风电装备业振兴的基础,那么“走出去”参与国际市场竞争则是中国风电装备业走出困局的“蹊径”。

  首先,站在全球市场分析,过去30年来,全球风电装机容量一直保持着每年20%的增速。随着各国新能源政策的逐步释放,国际市场对风机的需求将是国内市场的3至4倍。特别是在哥本哈根气候变化大会之后,可再生清洁能源已成为世界能源发展的方向,而技术最为成熟的风电将成为各国发展可再生能源的首选。由此预计,全球风电产业将再次迎来快速发展的黄金时代。对于中国风电装备业,这无疑是一块诱人的蛋糕。

  其次,从中国自身优势的角度分析,作为世界工厂的中国,不仅拥有廉价的人工成本,还有相对雄厚的制造业基础,而且未来国际风机制造产业正在出现向中国转移的势头。比如,世界最大的风电制造商———维斯塔斯,在2009年斥资30亿投入中国,分别在内蒙古呼和浩特、天津和江苏徐州等建设生产工厂,他们除了看好中国的市场以外,一个更为重要的目的是要在中国打造面向全球风电产业的装备基地。

  “老外”都到我们家门口竞争来了,我们的风机制造业怎么办?我们除了积极发展自己,勇敢参与竞争,别无选择。在经济全球化的背景下,中国企业一定要放眼全球参与竞争,目前虽然大连化锐、金风科技等两大风机制造商已跨入世界前十位之列,但和全球重量级风电装备巨头———丹麦Vestas、美国GE、西班牙Gamesa、印度Suzlon等企业相比,我国的差距还相当大。中国风电装备制造企业的发展之路很艰难,但我们必须迎难而上,把企业做大做强。


为进一步深化华东市场渠道开拓,优化资源配置,奥克斯中央空调将原来江苏市场结构进行了调整,江苏市场一分为三:苏南、南京和徐州营销中心、,苏南营销中心负责苏州、无锡、常州三地,南京营销中心负责南京市、镇江、扬州、盐城、南通、泰州,徐州营销中心负责徐州市、宿迁、连云港和淮安地区。

    新成立的徐州营销中心将专注于徐、宿、连、淮地区的市场推广、销售网络构建、售后服务以及工程安装服务的支持工作。

    此轮调整后,11年度奥克斯中央空调江苏市场总销量将突破1.5亿元。



AG8旗舰厅负压风机-大北农集团巨农种猪示范基地风机设备水帘设备供应商!台湾九龙湾负压风机配件供应商! 主要产品猪舍通风降温,猪棚通风降温,猪场通风降温,猪舍风机,养殖地沟风机,猪舍地沟风机,猪舍多少台风机,厂房多少台风机,车间多少台风机,猪舍什么风机好,厂房什么风机好,车间什么风机好,多少平方水帘,多大的风机,哪个型号的风机 相关的主题文章:
推荐案例